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The isotropic theory of viscoplasticity based on overstress does not use a
yield surface or a loading and unloading criterion. The inelastic strain rate
depends on overstress, the difference between the stress and the equilibrium stress,
and is assumed to be rate-dependent. Special attention is paid to the modeling of
elastic regions,

For the modeling of cyclic hardening, such as observed in annealed Type 304
Stainless Steel, an additional growth law for a scalar quantity which represents
the rate-independent asymptotic value of the equilibrium stress is added. It is
made to increase with inelastic deformation using a new scalar measure which differ-
entiates between nonproportional and proportional loading.

The theory is applied to correlate uniaxial data under two-step amplitude
loading including the effect of further hardening at the high amplitude and propor-
tional and nonproportional cyclic loadings. Results are compared with corresponding
experiments.

INTRODUCTION

For the modeling of the rate(time)-dependent, cyclic neutral, inelastic
deformation behavior of metals, the theory of viscoplasticity based on overstress
(VBO) with a differential growth law for the equilibrium stress was proposed [1].
When compared with biaxial experiments it was shown to predict the room temperature
deformation behavior of an Aluminum alloy under both monotonic and cyclic propor-
tional and nonproportional loadings [2].

Some alloys such as annealed copper [3], Type 304 Stainless Steel [4,5] and
316L Stainless Steel [6,7] exhibit complicated cyclic hardening phenomena. For
their modeling an additional growth law for a scalar quantity is introduced in VBO,
Its growth with inelastic deformation is governed by a new scalar measure which dif-
ferentiates between proportional and nonproportional loadings. The effect is similar
to isotropic hardening in classical plasticity. Unlike other approaches, e.g. [6],
neither an updating rule (or help function) nor a loading-unloading criterion is
needed in this formulation,

The purposes of the present paper are to give an isotropic formulation of VBO
applicable for cyclic hardening and to demonstrate its predictive capability in pro-
portional and nonproportional strain-controlled cyclic loadings. Some results of
numerical experiments are compared with corresponding room temperature results on
Type 304 Stainless Steel.
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The isotropic formulation consists of the following differential equations
and functions:
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The system of differential equations introduced in the above is similar to
that obtained in [2] with the exception that a dependence of Y on A and a
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growth law for A are added. The former ensures that the linear elastic regions
expand when A increases. In addition to the inelastic strain path length defined
in (6), two additional scalar measures are introduced in (7) and (8). The last
measure is nonzero when the inelastic strain and the inelastic strain rate are not
collinear. This occurs in nonproportional loading. The quantity defined in (7)
is of the same order as the one defined in (8) and accumulates in every inelastic
loading. These quantities have been used to correlate experimental data [8].

To illustrate the capability of the newly proposed growth law for A consider
two axial-torsion tests; one with proportional straining and the other with 90°
out-of-phase straining. It is clear that, though Pj are not zero, Py =0 in the
former case and P, #0 in the latter case. Therefore Eq.(10) gives a different
growth in the two cases which is reflected in the magnitude of P,. If we consider
two cyclic tests with different strain ranges, again Eq.(10) gives a different growth
depending on the inelastic strain because £I" is included in Ppo and Pj. The model
can predict a further hardening at the high amplitude under two-step amplitude load-
ing even if saturation was reached at the first amplitude. If a small strain range
is performed following a large strain range in the two-step amplitude loading, the
model predicts a stabilized stress corresponding to the most recent level irrespec-
tive of the prior history. Equation (11) 1is introduced to delay the process of
reaching the stabilized value.

Aside from these qualitative predictions, the details of deformation behavior
must be evaluated through numerical experiments, The constants and functions of the
theory were selected to represent the Type 304 Stainless Steel. All numerical integra-
tions were performed using IMSL routine DGEAR on an IBM AT personal computer.

NUMERICAL EXPERIMENTS AND DISCUSSIONS

The procedure introduced in [1,2] for determining the constants and functions
is still useful. Stabilized stresses for different strain ranges under both uniaxial
and 90° out-of-phase loadings are necessary for the identifications of the constants
associated with the growth law for A. The details can be found in [9]. The constants
and functions for annealed Type 304 SS are listed in Table 1.

. - Simulations of the following four tests are reported, all conducted at the same
equivalent strain rate of ée=-0.0003 s~1. The first test is a two amplitude step~-up
uniaxial test with €4, =0.0056 for 15 cycles followed by 15 cycles with ¢,=0.008. 1In
the second test the sequence of the applied strain amplitudes is reversed. 1In the
third test the second block consisted of a 90° out-of-phase loading for 5 cycles with
the same equivalent strain amplitude as the previous uniaxial c¢ycling to near satura-
tion. Lastly a 90° out-of-phase cyclic test without any prior deformation was per-
formed with €, =0.0056 for 5 cycles.

The results for the first three tests are presented in Figure 1, The theory
correlates the experimental result reasonably well in normal cyclic hardening tests
and gives similar responses as reported in [6] in both further hardening and partial
fading memory cases. It also demonstrates that an additional hardening is experienced
in 90 degrees out~of-phase loading even when the material had almost saturated under
proportional loading with the same strain range. This behavior is found in experi-
ments [3,5]. It was shown [5] that the cyclic hardening behavior during in-phase
loading (axial, torsional and proportional loading) can be correlated on the basis
of the v, Mises equivalent stress and the accumulated strain path length, the integral
of (6). The present theory uses these quantities, see (5) and (6). On the basis of
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the results in Fig. 1 it is reasonable to assume that the theory can correlate the
hardening in in-phase loading.

The correlation for the 90° out-of-phase loading is shown in Figure 2 where the
experimental result for the 5th cycle is also plotted. Comparison of the saturation
levels for out-of-phase loading in Fig. 1 (path AB") and Fig. 2 (saturation is almost
reached after 5 cycles) shows that they are almost equal. It was found in {3] that
the saturated stress was not dependent on prior history. This fact is represented
by the present theory. Even though the model gives a correct stabilized stress in
90° out-of-phase loading, the description of the transient behavior needs improvement.

ACKNOWLEDGMENT

This research was made possible by a grant from the National Science Foundationm.

REFERENCES

[1] Krempl, E., J. McMahon and D. Yao, 'Viscoplasticity Based on Overstress with a
Differential Growth Law for the Equilibrium Stress," Mechanics of Materials (in
press).

[2] Yao, D. and E. Krempl, '"Viscoplasticity Theory Based on Overstress. The Predic~
tion of Monotonic and Cyclic Proportional and Nonproportional Loading Paths of
an Aluminum Alloy," Int'l. J. Plasticity, 1, pp.259-274, 1985.

{3] Lamba, H. S. and O. M. Sidebottom, "Cyclic Plasticity for Nonproportional Paths:
Part I - Cyclic Hardening, Erasure of Memory, and Subsequent Strain Hardening
Experiments," Trans. ASME, J. Engineering Materials and Technology, 100,
pp.96-103, 1978.

[4] ZLu, H., Ph.D. Dissertation, Rensselaer Polytechnic Institute, Troy, NY, May 1985.

[5] Krempl, E. and H. Lu, "The Hardening and Rate-Dependent Behavior of Fully Annealed
Type 304 Stainless Steel under Biaxial In-phase and Out-of-Phase Strain Cycling
at Room Temperature," Trans. ASME, J. Engineering Matertals and Technology, 106,
376-382, 1984,

[6] Chaboche, J. L., K. Dang Van and G. Cordier, "Modelization of the Strain Memory
Effect on the Cyclic Hardening of 316 Stainless Steel," SMIRT 5, Berlin, Germany,
1979, Paper L 11/3.

[7] Nouailhas, D., J. L. Chaboche, S. Savalle and G. Cailletaud, "On the Constitutive
Equations for Cyclic Plasticity under Nonproportional Loading," Int'L. J.
Plasttieity, 1, pp.317-330, 1985.

(8] Krempl, E. and H. Lu, "Proportional and Nonproportional Cycling of Type 304
Stainless Steel at Room Temperature. The Path Dependence of Hardening and Two
New Measures of Strain Path Length,'" Second Int. Conference on Biaxial/Multiaxial
Fatigue, Sheffield, UK, Dec. 1985, submitted for publication in the Proceedings.

[9] Yao, D., Ph.D. Dissertation, Rensselaer Polytechnic Institute, Troy, NY
(expected December 1986).

242



TABLE 1 MATERIAL CONSTANTS AND FUNCTIONS®

Material constants:
0.0653 Mpal™24 -1

E = 195000 MPa ag =
E, = 2000 MPa a, = 0.703

t 4 (1-ag)
A, = 115 MPa a; = 41.17 MPas” as
v = 0.5 a, = 0.2062

~(1-ag) ©
a; = 380000 MPa s ag = 0.495
a2 = 0,925 a8 = 0.505

Viscosity function:
- xL, -k
k[x] = k,(1+ kz) 3,
k1=314200 s, k2=60 MPa, k3=21.98

Shape modulus function:
vlx,y] = ¢y [y] + (cy-c [y]llexp(-cgx)

cyly] = Hy + Hyy

=0.0783 MPa™1, H,=74740 MPa, H.=37.04

=182500 MPa, ) 0

Co €3

*
All x and y are in units of MPa.
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The equivalent stress vs accumulated inelastic strain.
Solid and dotted lines: theory.
Strain history:
OAB uniaxial cycling with amplitude increase
= 15 cycles with €4 =0.0056 followed by
15 cycles with €4 =0.008;
OA'B' uniaxial cycling with amplitude decrease
= 15 cycles with €4+ 0.008 followed by
15 cycles with €4 =0.0056;
OAB" uniaxial cycling followed by 90° out-of-phase
cycling for 5 cycles at the same effective
strain amplitude. .
All tests vere performed with €, =0.0003 s=? ,
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Figure 2. The v3 X shear stress vs axial stress under 90° _
out-of-phase loading with €¢ = 0.0056 and €¢ = 0.0003 s :,
Solid lines: theory. Experimental data only show the

5th cycle.
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